## TYPICAL Cu VALUES

| SIZE<br>(NPS) | GATE         |           | GLOBE        |           |           | CHECK        |           |           |
|---------------|--------------|-----------|--------------|-----------|-----------|--------------|-----------|-----------|
|               | Reduced Port | Full Port | Reduced Port | Full Port | Y-Pattern | Reduced Port | Full Port | Y-Pattern |
| 1/4           | 3.9          | 3.9       | 1.0          | 2.0       | 3.0       | 0.5          | 1.6       | 3.5       |
| 3/8           | 7.2          | 9.1       | 2.0          | 2.2       | 6.0       | 1.0          | 2.0       | 5.5       |
| 1/2           | 7.2          | 16        | 2.0          | 2.2       | 6.0       | 1.0          | 2.0       | 5.5       |
| 3/4           | 12           | 33        | 2.5          | 5.0       | 8.0       | 2.0          | 4.0       | 8.5       |
| 1             | 27           | 70        | 5.0          | 9.0       | 12        | 4.0          | 7.0       | 12        |
| <b>1</b> 1/4  | 53           | 151       | 10           | 15        | 35        | 7.3          | 11        | 35        |
| 11/2          | 65           | 155       | 15           | 21        | 35        | 11           | 16        | 35        |
| 2             | 113          | 253       | 23           | 35        | 51        | 18           | 27        | 51        |

## FOR FLOW COEFFICIENT Cu

<Nomenclature>

- $C_{\mathcal{V}}$ : Flow coefficient for valves or piping components
- d : Internal diameter (inch)
- K: Resistance coefficient
- Q: Rate of flow (gpm)
- $\Delta P$  : Differential pressure between inlet pressure and outlet pressure (lb/in2, psig)
- ho : Weight density of fluid (lb/ft3)

The Cv coefficient of a valve is defined as the flow of water at 60°F, in gallons per minute, at pressure drop of one pound per square inch across the valve.

By the substitution of appropriate equivalent units in Darcy equation, it can be shown that,

$$C_{\mathcal{V}} = \frac{29.9d^2}{\sqrt{K}}$$

Also, the quantity in gallons per minute of liquids of low viscosity that flow through the valve can be determined from:

$$Q = C_{v} \sqrt{\Delta P \left(\frac{62.4}{\rho}\right)}$$
$$Q = 7.9 C_{v} \sqrt{\frac{\Delta P}{\rho}}$$

and the pressure drop can be computed from the same formula arranged as follows:

$$\Delta P = \frac{\rho}{62.4} \left(\frac{Q}{C_v}\right)^2$$

Figure 1 illustrates typical flow characteristics. All flow characteristics are available on Globe valve when required.



Fig.1 Inherent Flow Characteristics Curves